2016 Lake Waramaug Frost Basin Zooplankton Hatchery

The Frost Hypolimnetic Treatment System was used to process deep water withdrawn from Lake Waramaug to decrease phosphorus concentrations and Cyanobacteria blooms from 1982 to 2015. In 2015, a Layer Aeration System was designed and installed in Lake Waramaug, driven by a compressor in the pump house on Arrow Point. The idea for converting the Frost Basins to a "Seed Stock Zooplankton Hatchery" was developed during the conversion to Layer Aeration.

A walkway was installed to provide access to all four Cells.

An airlift pump chamber was installed to circulate water from Cell 4 to Cell 1.

A slide gate was installed on the outlet pipe, with a riser overflow pipe to establish water level.

A submersible pump on a timer was used to refill the basins from the catch basin after zooplankton release.

Frost Basi	n									
40	100	5	ft dimens	ions						
		20000	cu ft volur	ne						
		149600	gallons to	tal						
		112200	gallons 3 d	cells						
		74800	gallons 2 d	cells						
					factor up	from 80	gal culture			
Daphnia F	ood per fe	eding		1870	total volu	otal volume				
Total Basi	n Volume			1402.5	3 cells volume					
	grams	pounds		935	2 cells vo	ume				
Yeast	2805	6.171								
Flour	2805	6.171			Daphnia Food					
Sugar	467.5	1.0285				Voast	grams			
						Flour	1.5			
Total 3 Ce	ll Volume					Sugar	0.25			
	grams	pounds								
Yeast	2103.75	4.62825					Mix in a gla	ss of warm	water	
Flour	2103.75	4.62825					Bring up to	2 liters		
Sugar	233.75	0.51425					[a a da	20 -		*
							reeds	80 8	allon cui	ture
Total 2 Ce	ll Volume			Feed Cell	1 from wa	alkway	Valved [Drip Feed		
	grams	pounds		30 gallon	drum set u	ip with v	varming & n	nixing		
Yeast	1402.5	3.0855		Feed App	proximately 2x per week Spring and Early Summer					
Flour	1402.5	3.0855								
Sugar	233.75	0.51425								

- Rectangular zooplankton net pulled vertically up from a fiberglass plate collects all animals in the identified volume. Counted to determine animal/liter density.
- The counted density is then used to multiply by the volume of water released to estimate animals released to the lake from the zooplankton hatchery.

Waramaug Zooplankton Introductions 2016					
			Estimated Number		Est Avg or
Date	То	From	Low Est	High Est	Based on Counts
4/14/2016	Lake Center	Lab Culture	10000	12000	11,000
5/10/2016	Lake Center	Lab Culture	10000	12000	11,000
5/26/2016	Lake Center	Lab Culture	10000	12000	11,000
7/7/2016	Lake Shore	AirLift Nets			67,796
7/7/2016	Lake Shore	Gate Release			2,173,840
7/22/2016	Lake Shore	Gate Release		Est avg 7/7 8/18	2,717,300
8/18/2016	Lake Shore	Gate Release			3,260,759
10/18/2016	Lake Shore	Gate Release			8,695,359
				Estimated Totals	16,948,054

Waramaug Zooplankton Introductions 2016							
	Cumulative	Estimated Daphnia					
	Introduction	Introduced					
4/14/2016	11,000	11,000					
5/10/2016	22,000	11,000					
5/26/2016	33,000	11,000					
7/7/2016	100,796	67,796					
7/7/2016	2,274,636	2,173,840					
7/22/2016	4,991,936	2,717,300					
8/18/2016	8,252,695	3,260,759					
10/18/2016	16,948,054	8,695,359					

Frost Basin Sampling Data								
26-May-16 22-Jul-16 18-Aug-16 15-Sep-16								
Temperature (°C)	19.3	22.3	24.5	19.6				
ODO mg/L	7.0	7.2	6.0	6.9				
ODO % Saturation	78.6	85.4	74.0	77.1				
Specific Conductivity (mS/cm)		162		160.06				
рН	8.8	8.8	8.5	8.87				
ORP (mV)	109	141	82	82				
Turbidity (NTU)								

	Waramaug 2016: Phycocyanin Levels (ug/l)								
Site 14	Depth	14-Apr	29-Apr	26-May	24-Jun	22-Jul	18-Aug	15-Sep	18-Oct
	Surface Grab								
	1m	12.30	9.25	11.74	9.36	8.65	15.33	15.17	27.79
	3m								
	5m			11.70	16.52	11.35	21.79	19.84	16.76
	7m								
	9m			16.99	13.20	24.41	13.96	27.70	12.70
	11m			19.68	20.77	25.02	27.47	36.43	72.57
	OB	15.10	15.05		20.77				
Site 8	1m		13.55	10.77	15.52	9.78	14.05	14.32	16.91
	Mid								
	OB		11.86	11.98	16.70	18.44	29.02	13.72	13.98
Streams	Ash Swamp						13.83		
	Sucker Brook						9.03		
	Frost Basin			16.97	12.60	19.92	49.07	53.21	

Lak	ke Warama	aug 2016	Frost Ba	isin		
Total Phosp	horus - P (ug	/L)				
Date	26-May-16	24-Jun-16	22-Jul-16	18-Aug-16	15-Sep-16	18-Oct-16
Frost Basin	61	35	48	77	81	63
Ammonia - 1	N (ug/L)					
Date	26-May-16	24-Jun-16	22-Jul-16	18-Aug-16	15-Sep-16	18-Oct-16
Frost Basin	14	48	34	8	23	68
Nitrite-Nitra	ate - N (ug/L))				
Date	26-May-16	24-Jun-16	22-Jul-16	18-Aug-16	15-Sep-16	18-Oct-16
Frost Basin	48	56	18	ND	ND	67
Silica (mg/L)					
Date	26-May-16	24-Jun-16	22-Jul-16	18-Aug-16	15-Sep-16	18-Oct-16
Frost Basin	4.788	2.661	0.116	0.031	2.351	4.171

Lessons Learned

- Pump Refill System, pump prime, available solar input, refill rate
- Air-Lift Circulation Systems vs. Water Level
- Water Chemistry, Nutrients, Phytoplankton Composition
 - Optimizing Daphnia Growth, food resource
- Surface Duckweeds and Light Penetration
- Lake Level, Catch Basin Pump

Potential Technology Transfer

(best from shaded section of the pool or tank)